Applications of a Hybrid Manufacturing Process for Fabrication and Repair of Metallic Structures
نویسندگان
چکیده
Since its appearance, rapid prototyping technology has been of interest to various industries that are looking for a process to produce/build a part directly from a CAD model in a short time. Among them, the direct metal deposition process is the only process which directly manufactures a fully dense metal part without intermediate steps. However, challenges of the direct metal deposition process include building overhang structures, producing precision surfaces, and making parts with complex structures. Coupled between the additive and the subtractive processes into a single workstation, the integrated process, or hybrid process, can produce a metal part with machining accuracy and surface finish. Therefore, the hybrid process is potentially a very competitive process to fabricate and repair metallic structures. This paper summarizes the current development of the hybrid process to process high temperature metallic materials, including tool steel and Ti64. Research in simulation and modeling, process development, and actual part building and repair are discussed. Introduction For more than a decade, layered manufacturing technology, also known as Rapid Prototyping (RP) has given industry an approach to achieve the goal of providing products in a shorter time and at a lower cost. Most of the current RP systems are built on a 2.5-D platform. Among them, the laser-based deposition process is a potential technique that can produce fully functional parts directly from a CAD system and eliminate the need for intermediate steps. However, such a process is currently limited by the need for supporting structures – a technology commonly used in all the current RP systems. Support structures are not desirable for high strength and high temperature materials such as metals and ceramics since these support structures are very difficult to remove. Multi-axis systems can offer much more flexibility in building complex objects. Laser aided RP is advancing the state-of-the-art in fabrication of complex, near–net shape functional metal parts by extending the laser cladding concept to RP. The Laser Aided Manufacturing Process being developed in the Laser Aided Manufacturing Processes (LAMP) Laboratory at the University of Missouri-Rolla (UMR) combines laser deposition and machining processes to develop a hybrid rapid manufacturing process to build functional metal parts. This paper summarizes the research and applications of such a hybrid process for fabrication and repair of metallic structures. A Hybrid Manufacturing System In order to expand the applications of metal deposition processes, multi-axis capability is greatly needed. A multi-axis rapid manufacturing system can be hardware-wise configured by adding extra degrees of mobility to a deposition system or by mounting a laser deposition device on a
منابع مشابه
Fabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications
Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...
متن کاملNew-emerging approach for fabrication of near net shape aluminum matrix composites/nanocomposites: Ultrasonic additive manufacturing
Recently, high-performance lightweight materials with outstanding mechanical properties have opened up their way to some sophisticated industrial applications. As one of these systems, aluminum matrix composites/nanocomposites (AMCs) offer an outstanding combination of relative density, hardness, wear resistance, and mechanical strength. Until now, several additive manufacturing methods have be...
متن کاملFabrication of Porous Segments Using Ti-6Al-4V Chips for Orthopaedic Applications
Different methods have been evaluated for manufacturing the porous Ti6Al4V alloys according to decreasing stress shielding phenomenon and increasing mechanical compatibility between the metallic components and the host tissue. For this purpose, in this work Ti6Al4V alloy chips were pressed under 400 MPa pressure and then samples were categorized and heated into two groups at 1000 and 1150℃ unde...
متن کاملRapid Manufacturing of Co-Cr-Mo Implants by Three-Dimentional Printing Process for Orthopedic Applications
The fabrication of complex-shaped parts out of (wt %) Co-28Cr-6Mo alloy by three-dimensional printing (3DP) was studied using two grades of the alloy with average particle sizes of 20 and 75 μm. To produce sound specimens, 3DP processing parameters were tuned. The sintering behavior of the powders was characterized by the dilatometric analysis. Batch sintering in argon atmosphere at 1280 °...
متن کاملTransformation from manufacturing process taxonomy to repair process taxonomy: a phenetic approach
The need of taxonomy is vital for knowledge sharing. This need has been portrayed by through-life engineering services/systems. This paper addresses this issue by repair process taxonomy development. Framework for repair process taxonomy was developed followed by its implementation. The importance of repair process taxonomy has been highlighted.
متن کامل